Refilling Meridians in a Genus 2 Handlebody Complement

نویسندگان

  • MARTIN SCHARLEMANN
  • Heiner Zieschang
چکیده

Suppose a genus two handlebody is removed from a 3manifold M and then a single meridian of the handlebody is restored. The result is a knot or link complement in M and it is natural to ask whether geometric properties of the link complement say something about the meridian that was restored. Here we consider what the relation must be between two not necessarily disjoint meridians so that restoring each of them gives a trivial knot or a split link.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparing 2-handle Additions to a Genus 2 Boundary Component

A theorem concerning the effects of attaching a 2–handle to a suture on the boundary of a sutured manifold is used to compare the effects of two 2-handle attachments to a genus 2 boundary component of a compact, orientable 3–manifold. We obtain a collection of results relating the euler characteristic of a surface in one of the resulting 3– manifolds to the intersection number of the two curves...

متن کامل

Genus Two Heegaard Spines in S 3

We study trivalent graphs in S3 whose closed complement is a genus two handlebody. We show that such a graph, when put in thin position, has a level edge connecting two vertices.

متن کامل

A Simple Presentation of the Handlebody Group of Genus 2 Clement

For genus g = 2 I simplify Wajnryb’s presentation of the handlebody group.

متن کامل

Layered - Triangulations of 3 – Manifolds

A family of one-vertex triangulations of the genus-g-handlebody, called layered-triangulations, is defined. These triangulations induce a one-vertex triangulation on the boundary of the handlebody, a genus g surface. Conversely, any one-vertex triangulation of a genus g surface can be placed on the boundary of the genus-g-handlebody in infinitely many distinct ways; it is shown that any of thes...

متن کامل

Some Homological Invariants of Mapping Class Group of a 3-dimensional Handlebody

We show that, if g ≥ 2, the virtual cohomological dimension of the mapping class group of a 3-dimensional handlebody of genus g is equal to 4g − 5 and the Euler number of it is equal to 0.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006